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Abstract. In this paper the important for the design of shock-absorbers case of a perfectly rigid body impact with 

a viscoelastic incompressible body is considered. Mathematical apparatus for calculating the parameters of 

impact of a rigid body with a highly- elastic rod is developed, taking into account the peculiarities of the 

behavior of elastomers under fast loading. An analytical solution was obtained for longitudinal impact on a 

vertically disposed rod. The solution was fulfilled by means of the Bubnov- Galerkin variational method, 

reducing the problem to solving of the integro-differential equation for given boundary and initial conditions The 

solution is received for the exponential relaxation kernel for the Maxwell model of a highly-elastic material, it 

describes the process of damped longitudinal vibration, taking into account the effect of creep caused by the 

instantaneous impact loading. Based on the equation of vibratory motion the equations of velocity and 

acceleration are received, which are used for stress-strain behavior analysis of rubber damper. A numerical 

example of an axial tensile impact on a viscoelastic shock-absorber in the form of a cylindrical rod is given with 

the plots of time dependence of displacement, velocity, and acceleration of the impact end of the rod are 

provided, the possibility of using them for analyzing the shock absorber is demonstrated. 

Keywords: shock absorber, longitudinal impact, elastomers, rheological model, relaxation kernel. 

Introduction 

Impact phenomenon arises when moving solid bodies are colliding with each other or with fixed 

obstacles. For the modern technology impact processes are of great importance. The time intervals, 

during which the impact is lasting, are usually very small, and the resulting contact forces are very 

large. In connection with this anti-shock insulation is one of the main means of improving the 

reliability of the equipment. For manufacturing of shock absorbers elastomeric materials (natural and 

synthetic rubber) are widely used because of their specific properties: high elasticity, low volume 

compressibility, linear relationship between stress and strain up to strain of 15 ÷ 20 %, resistance to 

environmental factors, good dynamic properties. The high elasticity of rubbers allows them to 

withstand large elongation without breaking. Elastomeric materials have specific features of 

mechanical properties: alongside with the instantaneous elastic deformation, these materials exhibit 

retarding elastic deformation, viscous flow (creep) and relaxation [1-3]. 

Rubber is a material that has clearly defined relaxation properties, so its mechanical properties 

strongly depend on the time of application of external loads. If the duration of the force causing a 

deformation equal to the time of relaxation processes in the rubber, the elastic deformation comes in 

full force, and this mode of deformation will correspond to well-defined modulus of rubber. When rate 

of deforming load application increases, the modulus of elasticity will be changing, and its magnitude 

will be more than elastic modulus for the mode with full implementation of the elastic process. As the 

duration of impact is small, relaxaion must be taken into account for calculation of the impact 

parametrs [4]. 

In order to describe the behaviour of elastomeric material under dynamic loading most authors 

use the mechanical models of materials, which simplify the relationship between stress and strain in 

time. It is assumed that this equation is a linear with constant coefficients, and all features of the 

mechanical behavior may be described by a system combining of two basic types of mechanical 

elements: elastic and viscous [4-7]. 

During solving the problems of the impact in vibration isolation equipment, there are two types of 

deformations distinguished: total deformations of elastic elements and local deformations of colliding 

masses (inertial elements). If the contact forces between the masses are of interest, local deformation 

is necessary. To calculate shock isolators, it may be assumed that deformations of the masses 

themselves do not occur, and the action time of the forces is small in comparison with the oscillation 

time in the elastic element.  
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In the given paper the perfectly rigid body impact with a vertically disposed bar of viscoelastic 

material is considered. The solution was fulfilled by means of the Bubnov-Galerkin variational 

method, the problem is reduced to solving the integro-differential equation for given boundary and 

initial conditions. The solution is obtained for the exponential relaxation kernel for the Maxwell model 

of a high-elastic material.  

The aim of this work is to show the possibility of analytical solving of the impact problem of 

elastomeric material in nonlinear statement.  

Materials and methods 

The simplest model problems are one-dimensional linear problems of the impact loading of 

viscoelastic rods that allow an analytic solution. More complex problems may be solved by numerical 

methods, such as finite element and finite difference methods.  

For solving the nonstationary dynamic viscoelastic problems, the Laplace and Fourier transform 

methods are used, but under general models of linear viscoelastic behavior of rubber, the process of 

inversion of images is associated with considerable mathematical difficulties. Therefore, preference 

should be given to variational methods based on the application of the principle of the virtual work of 

Lagrange, the Bubnov-Galerkin method, and others. With this approach, the eigenfunctions of the 

corresponding elastic problems are used as the coordinate functions [8; 9]. 

Thus, the use of eigenfunctions in the Ritz procedure allows to frame a solution that identically 

satisfies the coordinate part of the equations of motion and the homogeneous boundary conditions of 

the problem, and also to seek a solution in the form of eigen mode decomposition in the case of forced 

motion [10; 11].  

In Fig. 1 a scheme of impact is given for two cases: tension impact and compression impact of a 

rigid body of mass M. A cylindrical rod of highly-elastomeric material, with the length h and 

crosssectional area A, is located vertically. Displacement along z-axis is noted w. 

 

a) tension impact  

 

b) compression impact 

Fig. 1. Scheme of impact of mass on vertically located rod: 1 – impact body;  

2 – cylindrical rod of highly-elastomeric material; 3 – reinforcing plate 
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The impact of a rigid body of mass M with a rod of viscoelastic material is described by integro-

differential equation: 
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== εσ  – Hooke’s law; 

 ρEc = - phase velocity of longitudinal elastic waves in the rod material; 

 E – Young’s modulus of elasticity; 

 E* – integrooperator: 
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For elastomeric materials as the kernel Λ(t) in the operator )(•∗E  is used the exponential kernel  
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where m = ρAh – mass of rod;  

 ρ – material density;  

and with the initial conditions (t = 0): 
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The solution of the nonstationary problem (4) - (6) is sought in the form: 
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where sin(γn (h – z)) – eigenfunctions of the problem of the rod vibration with load at the end; 

 γn  – eigenvalues as roots of the transcendental equation; 

 ( ) 0=−
M

m
hhtgh nn γγ .   (8) 

Using the Bubnov – Galerkin method, the solution of equation (1), taking into account (7), is 

reduced to inhomogeneous integro-differential equations for the definition of functions fn(t): 
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In equation (9) H(t) is the Heaviside function. 
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Taking into account (6), the initial conditions for equation (9) are written as: 
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Highly elastic properties of elastomers for many problems are satisfactorily described using the 

exponential kernel Λ(t) = Ae
-βt

. For obtaining of the exact solution of (9), the exponential kernel with 

A = β is used, which corresponds to the Maxwell model. 

The exact solution of equation (9) in written in the form: 
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where the function ψn(t) is a solution of the homogeneous equation (9). This solution has the 

form: 
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The constants C1n, C2n, C3n, taking into account (13) are written: 
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From the equations (11) – (14) the desired solution for the function fn(t) has the form 
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The solutions (7) and (15) describe the process of damped oscillations, taking into account the 

effect of creep caused by the instantaneous application of the load. 

The algorithm of the problem solution is as follows: 

1) to find hγn from equation (8);  

2) to find γn, an
2
, ϑn, fn(0), dfn(0)/dt, ωn;  

3) in accordance with equations (15) find f1(t), f2n(t), … fn(t) and according to (7) find w for any 

section of the rubber rod. If we know the motion in z – direction as the function of time w(t), we can 

define the velocity and acceleration of sections, and consequently, the acting impulsive force.  

Results and discussion 

The example of numerical solution of this problem for the cylindrical rubber rod with the height 

h = 0.20 m, radius r = 0.06 m, sectional area S = 0.0113 m
2
, Young’s modulus E = 2.4 MPa, specific 

weight ρ = 1200 kg·m
-3

, mass m = 2.714 kg, Maxwell kernel parameters A = β = 6. Rubber rod mass 

and impact body mass ratio is m/M = 0.5, velocity at the beginning of the tension impact is v0 = -

1.5 m·s
-1

. 

The problem is solved with help of Mathcad -15 program, the results are given below. 

Displacement, velocity, acceleration and force are calculated for the section with the coordinate z = 0, 

i.e. the rod impact end. Number of the members of equation (7) n is assumed 20, further increasing 
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does not influence the results, it is usually enough to have six or seven roots for velocity and 

displacement calculation. 

In Fig. 2 the method of solution of transcendental equation (8) is presented for the ratio 

m/M = 0.5: here we can see the first twenty roots, the difference between the numerical values is 

approaching π.  

.  

Fig. 2. Definition of roots of transcendental equation 

In Fig. 3 the plot of dependence of the displacement on time for the first 0.2 seconds is presented, 

it is shown that the maximum displacement is 5.8 mm. 

 

Fig. 3. Plot of displacement of impact end of rod dependence on time 

In Fig. 4 plots of the dependence of the velocity of the rod impact end on time are shown. At the 

end of the impact the velocity is equal to zero, in our case this time is 1.6 seconds, if we ignore the 

velocity of fraction of millimetres per second, which can last a long time. 

 

Fig. 4. Plots of velocity of impact end of rod depending on time 

Fig. 5 shows the acceleration – time dependence in the first 0.2 seconds.  

 

Fig. 5. Plot of acceleration of impact end of rod depending on time  
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Maximal acceleration is equal to 352 m·s
-2

, accordingly, the maximal force is 1908 N and the 

maximal stress obtained equals to σ = 169 kPa. 

Maximal tensile displacement is equal to 5.8 mm, so the relative deformation is small enough - 

2.9 %. Using the formula for static displacement according to the Hooke’s law the required force may 

be calculated, it is obtained equal to 786 N: 

 .N 786
2.0

0113.0104.2108.5 63

=
⋅⋅⋅⋅

==
−

h

wEA
N st  

With the form factor for a cylindrical cross section kf  = 1.25 it is equal to 983 N. This results in 

the static force twice less than the dynamic force at the end of the rod.  

The solution in accordance with equations (15), (7) has physical clearness: it describes the process 

of damping of vibration caused by the instantaneous application of the load. 

The results may be used for designing of new shock-absorbers or for checking the operating 

capability of the existing one: to define their stress and strain characteristics. If we know the maximal 

acceleration, we can define the maximal impact force and compressive or tensile stress in the damper 

cros-sections; duration of impact is defined upon completion the wave process in the rod. 

There are no published results of analytical solutions of the visco-elastic problem, but the results 

of numerical solutions of analogical problems, received by finite elements methods, are very similar to 

the foregoing [9]. 

Conclusions 

In the given paper an analytical method for solving the longitudinal impact problem for a body 

with viscoelastic properties is presented. The relaxation kernel of the elastomeric material is assumed 

to be exponential in accordance with the Maxwell model. Thus, the problem of longitudinal impact on 

the rubber shock absorber may be quickly solved, if the properties of the elastomeric material are 

known. In this work the tensile impact of a rigid body with a rubber rod is discussed, calculation of the 

compression impact is analogical.  

The displacement, velocity, acceleration and the impact forces in any cross section of the shock 

absorber may be determined, as well as duration of the impact.  

The problem for highly elastic bodies with more complex kernel may be solved numerically by 

means of the finite difference procedure or the finite elements method.  

The next stage of this work is an experimental study of such impact and comparison of the 

experimental and theoretical results. 
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